mapteksdk.labs.cells module

Experimental implementation of sparse cell networks.

Currently only supports type queries.

class CellNetworkBase(object_id=None, lock_type=LockType.READWRITE)

Bases: Topology

Cell Network Base Class.

property cell_count

Returns the number of cells within cell network.

Returns:

The number of cells within the cell network.

Return type:

int

attribute_names()

Returns a list containing the names of all object-level attributes.

Use this to iterate over the object attributes.

Returns:

List containing the attribute names.

Return type:

list

Examples

Iterate over all object attributes of the object stared at “target” and print their values.

>>> from mapteksdk.project import Project
>>> project = Project()
>>> with project.read("target") as read_object:
...     for name in read_object.attribute_names():
...         print(name, ":", read_object.get_attribute(name))
cancel()

Cancel any pending changes to the object.

This undoes all changes made to the object since it was opened (including any changes saved by save()) and then closes the object.

After this is called, attempting to read or edit any of the properties on this object (other than the id) will raise an ObjectClosedError.

Raises:
  • ReadOnlyError – If the object was open for read only (i.e not for editing). It is not necessary to call this for a read only object as there will be no pending changes.

  • ObjectClosedError – If called on a closed object.

close()

Closes the object and saves the changes to the Project.

Attempting to read or edit properties of an object after closing it will raise a ReadOnlyError.

property closed: bool

If this object has been closed.

Attempting to read or edit a closed object will raise an ObjectClosedError. Such an error typically indicates an error in the script and should not be caught.

Examples

If the object was opened with the Project.new(), Project.edit() or Project.read() in a “with” block, this will be True until the with block is closed and False afterwards.

>>> with self.project.new("cad/point_set", PointSet) as point_set:
>>>     point_set.points = [[1, 2, 3], [4, 5, 6]]
>>>     print("closed?", point_set.closed)
>>> print("closed?", point_set.closed)
closed? False
closed? True
property coordinate_system: CoordinateSystem | None

The coordinate system the points of this object are in.

If the object has no coordinate system, this will be None.

Raises:

ReadOnlyError – If set on an object open for read-only.

Warning

Setting this property does not change the points. This is only a label stating the coordinate system the points are in.

Examples

Creating an edge network and setting the coordinate system to be WGS84. Note that setting the coordinate system does not change the points. It is only stating which coordinate system the points are in.

>>> from pyproj import CRS
>>> from mapteksdk.project import Project
>>> from mapteksdk.data import Polygon
>>> project = Project()
>>> with project.new("cad/rectangle", Polygon) as new_edges:
...     # Coordinates are in the form [longitude, latitude]
...     new_edges.points = [[112, 9], [112, 44], [154, 44], [154, 9]]
...     new_edges.coordinate_system = CRS.from_epsg(4326)

Often a standard map projection is not convenient or accurate for a given application. In such cases a local transform can be provided to allow coordinates to be specified in a more convenient system. The below example defines a local transform where the origin is translated 1.2 degrees north and 2.1 degree east, points are scaled to be twice as far from the horizontal origin and the coordinates are rotated 45 degrees clockwise about the horizontal_origin. Note that the points of the polygon are specified in the coordinate system after the local transform has been applied.

>>> import math
>>> from pyproj import CRS
>>> from mapteksdk.project import Project
>>> from mapteksdk.data import Polygon, CoordinateSystem, LocalTransform
>>> project = Project()
>>> transform = LocalTransform(
...     horizontal_origin = [1.2, 2.1],
...     horizontal_scale_factor = 2,
...     horizontal_rotation = math.pi / 4)
>>> system = CoordinateSystem(CRS.from_epsg(20249), transform)
>>> with project.new("cad/rectangle_transform", Polygon) as new_edges:
...     new_edges.points = [[112, 9], [112, 44], [154, 44], [154, 9]]
...     new_edges.coordinate_system = system

See also

mapteksdk.data.coordinate_systems.CoordinateSystem

Allows for a coordinate system to be defined with an optional local transform.

property created_date: datetime

The date and time (in UTC) of when this object was created.

Returns:

The date and time the object was created. 0:0:0 1/1/1970 if the operation failed.

Return type:

datetime.datetime

delete_all_attributes()

Delete all object attributes attached to an object.

This only deletes object attributes and has no effect on PrimitiveAttributes.

Raises:

RuntimeError – If all attributes cannot be deleted.

delete_attribute(attribute)

Deletes a single object-level attribute.

Deleting a non-existent object attribute will not raise an error.

Parameters:

attribute (str) – Name of attribute to delete.

Returns:

True if the object attribute existed and was deleted; False if the object attribute did not exist.

Return type:

bool

Raises:

RuntimeError – If the attribute cannot be deleted.

dissociate_raster(raster)

Removes the raster from the object.

If an error occurs after dissociating a raster resulting in save() not being called, the dissociation of the raster can only be undone if the application’s API version is 1.6 or greater.

Prior to mapteksdk 1.6: Dissociating a raster will not be undone if an error occurs.

Parameters:

raster (Raster | ObjectID[Raster]) – The raster to dissociate.

Returns:

True if the raster was successfully dissociated from the object, False if the raster was not associated with the object.

Return type:

bool

Raises:

Notes

This only removes the association between the Raster and the object, it does not clear the registration information from the Raster.

Examples

Dissociate the first raster found on a picked object.

>>> from mapteksdk.project import Project
>>> from mapteksdk import operations
>>> project = Project()
>>> oid = operations.object_pick(
...     support_label="Pick an object to remove a raster from.")
... with project.edit(oid) as data_object:
...     report = f"There were no raster to remove from {oid.path}"
...     for index in data_object.rasters:
...         data_object.dissociate_raster(data_object.rasters[index])
...         report = f"Removed raster {index} from {oid.path}"
...         break
... # Now that the raster is dissociated and the object is closed,
... # the raster can be associated with a different object.
... operations.write_report("Remove Raster", report)
property extent: Extent

The axes aligned bounding extent of the object.

get_attribute(name)

Returns the value for the attribute with the specified name.

Parameters:

name (str) – The name of the object attribute to get the value for.

Returns:

The value of the object attribute name. For dtype = datetime.datetime this is an integer representing the number of milliseconds since 1st Jan 1970. For dtype = datetime.date this is a tuple of the form: (year, month, day).

Return type:

ObjectAttributeTypes

Raises:

KeyError – If there is no object attribute called name.

Warning

In the future this function may be changed to return datetime.datetime and datetime.date objects instead of the current representation for object attributes of type datetime.datetime or datetime.date.

get_attribute_type(name)

Returns the type of the attribute with the specified name.

Parameters:

name (str) – Name of the attribute whose type should be returned.

Returns:

The type of the object attribute name.

Return type:

ObjectAttributeDataTypes

Raises:

KeyError – If there is no object attribute called name.

get_colour_map()

Return the ID of the colour map object associated with this object.

Returns:

The ID of the colour map object or null object ID if there is no colour map.

Return type:

ObjectID

property id: ObjectID[DataObject]

Object ID that uniquely references this object in the project.

Returns:

The unique id of this object.

Return type:

ObjectID

property is_read_only: bool

If this object is read-only.

This will return True if the object was open with Project.read() and False if it was open with Project.edit() or Project.new(). Attempting to edit a read-only object will raise an error.

property lock_type: LockType

Indicates whether operating in read-only or read-write mode.

Use the is_read_only property instead for checking if an object is open for reading or editing.

Returns:

The type of lock on this object. This will be LockType.ReadWrite if the object is open for editing and LockType.Read if the object is open for reading.

Return type:

LockType

property modified_date: datetime

The date and time (in UTC) of when this object was last modified.

Returns:

The date and time this object was last modified. 0:0:0 1/1/1970 if the operation failed.

Return type:

datetime.datetime

property rasters: dict[int, ObjectID[Raster]]

The raster associated with this object.

This is a dictionary of raster indices and Object IDs of the raster images currently associated with this object.

The keys are the raster ids and the values are the Object IDs of the associated rasters. Note that all raster ids are integers however they may not be consecutive - for example, an object may have raster ids 0, 1, 5 and 200.

Notes

Rasters with higher indices appear on top of rasters with lower indices. The maximum possible raster id is 255.

Removing a raster from this dictionary will not remove the raster association from the object. Use dissociate_raster to do this.

Examples

Iterate over all rasters on an object and invert the colours. Note that this will fail if there is no object at the path “target” and it will do nothing if no rasters are associated with the target.

>>> from mapteksdk.project import Project
>>> project = Project()
>>> with project.read("target") as read_object:
...     for raster in read_object.rasters.values():
...         with project.edit(raster) as edit_raster:
...             edit_raster.pixels[:, :3] = 255 - edit_raster.pixels[:, :3]
remove_coordinate_system()

Remove the coordinate system from the object.

This does not change the geometry of the object. It only clears the label which states what coordinate system the object is in.

This has no effect if the object does not have a coordinate system.

save()

Save the changes made to the object.

Generally a user does not need to call this function, because it is called automatically at the end of a with block using Project.new() or Project.edit().

Returns:

The change reasons for the operation. This depends on what changes to the object were saved. If the api_version is less than 1.9, this always returns ChangeReasons.NO_CHANGE.

Return type:

ChangeReasons

set_attribute(name, dtype, data)

Sets the value for the object attribute with the specified name.

This will overwrite any existing attribute with the specified name.

Parameters:
Raises:
  • ValueError – If dtype is an unsupported type.

  • TypeError – If value is an inappropriate type for object attribute name.

  • ValueError – If name starts or ends with whitespace or is empty.

  • RuntimeError – If a different error occurs.

Notes

If an error occurs after adding a new object attribute or editing an existing object attribute resulting in save() not being called, the changes to the object attributes can only be undone if the application’s API version is 1.6 or greater.

Prior to mapteksdk 1.6: Adding new object attributes, or editing the values of object attributes, will not be undone if an error occurs.

Examples

Create an object attribute on an object at “target” and then read its value.

>>> import ctypes
>>> from mapteksdk.project import Project
>>> project = Project()
>>> with project.edit("target") as edit_object:
...     edit_object.set_attribute("count", ctypes.c_int16, 0)
... with project.read("target") as read_object:
...     print(read_object.get_attribute("count"))
0
classmethod static_type()

Return the type of a topology as stored in a Project.

This can be used for determining if the type of an object is topology.

class SparseIrregularCellNetwork(object_id=None, lock_type=LockType.READWRITE, row_count=0, col_count=0, valid_cell_map=[])

Bases: CellNetworkBase

Sparse irregular cell network.

Parameters:
  • row_count (int) – Count of rows.

  • col_count (int) – Count of rows.

  • valid_cell_map (ndarray or array) – 1D array of bools representing which cells in the cell network will be considered valid (True) or as nulls (False).

Raises:

Exception – On failure to create.

See also

CellNetworkBase

Base class for Cell Networks.

Notes

row_count, col_count and valid_cell_map parameters need only be specified if creating a new network.

classmethod static_type()

Return the type of sparse irregular cell network as stored in a Project.

This can be used for determining if the type of an object is a sparse irregular cell network.

attribute_names()

Returns a list containing the names of all object-level attributes.

Use this to iterate over the object attributes.

Returns:

List containing the attribute names.

Return type:

list

Examples

Iterate over all object attributes of the object stared at “target” and print their values.

>>> from mapteksdk.project import Project
>>> project = Project()
>>> with project.read("target") as read_object:
...     for name in read_object.attribute_names():
...         print(name, ":", read_object.get_attribute(name))
cancel()

Cancel any pending changes to the object.

This undoes all changes made to the object since it was opened (including any changes saved by save()) and then closes the object.

After this is called, attempting to read or edit any of the properties on this object (other than the id) will raise an ObjectClosedError.

Raises:
  • ReadOnlyError – If the object was open for read only (i.e not for editing). It is not necessary to call this for a read only object as there will be no pending changes.

  • ObjectClosedError – If called on a closed object.

property cell_count

Returns the number of cells within cell network.

Returns:

The number of cells within the cell network.

Return type:

int

close()

Closes the object and saves the changes to the Project.

Attempting to read or edit properties of an object after closing it will raise a ReadOnlyError.

property closed: bool

If this object has been closed.

Attempting to read or edit a closed object will raise an ObjectClosedError. Such an error typically indicates an error in the script and should not be caught.

Examples

If the object was opened with the Project.new(), Project.edit() or Project.read() in a “with” block, this will be True until the with block is closed and False afterwards.

>>> with self.project.new("cad/point_set", PointSet) as point_set:
>>>     point_set.points = [[1, 2, 3], [4, 5, 6]]
>>>     print("closed?", point_set.closed)
>>> print("closed?", point_set.closed)
closed? False
closed? True
property coordinate_system: CoordinateSystem | None

The coordinate system the points of this object are in.

If the object has no coordinate system, this will be None.

Raises:

ReadOnlyError – If set on an object open for read-only.

Warning

Setting this property does not change the points. This is only a label stating the coordinate system the points are in.

Examples

Creating an edge network and setting the coordinate system to be WGS84. Note that setting the coordinate system does not change the points. It is only stating which coordinate system the points are in.

>>> from pyproj import CRS
>>> from mapteksdk.project import Project
>>> from mapteksdk.data import Polygon
>>> project = Project()
>>> with project.new("cad/rectangle", Polygon) as new_edges:
...     # Coordinates are in the form [longitude, latitude]
...     new_edges.points = [[112, 9], [112, 44], [154, 44], [154, 9]]
...     new_edges.coordinate_system = CRS.from_epsg(4326)

Often a standard map projection is not convenient or accurate for a given application. In such cases a local transform can be provided to allow coordinates to be specified in a more convenient system. The below example defines a local transform where the origin is translated 1.2 degrees north and 2.1 degree east, points are scaled to be twice as far from the horizontal origin and the coordinates are rotated 45 degrees clockwise about the horizontal_origin. Note that the points of the polygon are specified in the coordinate system after the local transform has been applied.

>>> import math
>>> from pyproj import CRS
>>> from mapteksdk.project import Project
>>> from mapteksdk.data import Polygon, CoordinateSystem, LocalTransform
>>> project = Project()
>>> transform = LocalTransform(
...     horizontal_origin = [1.2, 2.1],
...     horizontal_scale_factor = 2,
...     horizontal_rotation = math.pi / 4)
>>> system = CoordinateSystem(CRS.from_epsg(20249), transform)
>>> with project.new("cad/rectangle_transform", Polygon) as new_edges:
...     new_edges.points = [[112, 9], [112, 44], [154, 44], [154, 9]]
...     new_edges.coordinate_system = system

See also

mapteksdk.data.coordinate_systems.CoordinateSystem

Allows for a coordinate system to be defined with an optional local transform.

property created_date: datetime

The date and time (in UTC) of when this object was created.

Returns:

The date and time the object was created. 0:0:0 1/1/1970 if the operation failed.

Return type:

datetime.datetime

delete_all_attributes()

Delete all object attributes attached to an object.

This only deletes object attributes and has no effect on PrimitiveAttributes.

Raises:

RuntimeError – If all attributes cannot be deleted.

delete_attribute(attribute)

Deletes a single object-level attribute.

Deleting a non-existent object attribute will not raise an error.

Parameters:

attribute (str) – Name of attribute to delete.

Returns:

True if the object attribute existed and was deleted; False if the object attribute did not exist.

Return type:

bool

Raises:

RuntimeError – If the attribute cannot be deleted.

dissociate_raster(raster)

Removes the raster from the object.

If an error occurs after dissociating a raster resulting in save() not being called, the dissociation of the raster can only be undone if the application’s API version is 1.6 or greater.

Prior to mapteksdk 1.6: Dissociating a raster will not be undone if an error occurs.

Parameters:

raster (Raster | ObjectID[Raster]) – The raster to dissociate.

Returns:

True if the raster was successfully dissociated from the object, False if the raster was not associated with the object.

Return type:

bool

Raises:

Notes

This only removes the association between the Raster and the object, it does not clear the registration information from the Raster.

Examples

Dissociate the first raster found on a picked object.

>>> from mapteksdk.project import Project
>>> from mapteksdk import operations
>>> project = Project()
>>> oid = operations.object_pick(
...     support_label="Pick an object to remove a raster from.")
... with project.edit(oid) as data_object:
...     report = f"There were no raster to remove from {oid.path}"
...     for index in data_object.rasters:
...         data_object.dissociate_raster(data_object.rasters[index])
...         report = f"Removed raster {index} from {oid.path}"
...         break
... # Now that the raster is dissociated and the object is closed,
... # the raster can be associated with a different object.
... operations.write_report("Remove Raster", report)
property extent: Extent

The axes aligned bounding extent of the object.

get_attribute(name)

Returns the value for the attribute with the specified name.

Parameters:

name (str) – The name of the object attribute to get the value for.

Returns:

The value of the object attribute name. For dtype = datetime.datetime this is an integer representing the number of milliseconds since 1st Jan 1970. For dtype = datetime.date this is a tuple of the form: (year, month, day).

Return type:

ObjectAttributeTypes

Raises:

KeyError – If there is no object attribute called name.

Warning

In the future this function may be changed to return datetime.datetime and datetime.date objects instead of the current representation for object attributes of type datetime.datetime or datetime.date.

get_attribute_type(name)

Returns the type of the attribute with the specified name.

Parameters:

name (str) – Name of the attribute whose type should be returned.

Returns:

The type of the object attribute name.

Return type:

ObjectAttributeDataTypes

Raises:

KeyError – If there is no object attribute called name.

get_colour_map()

Return the ID of the colour map object associated with this object.

Returns:

The ID of the colour map object or null object ID if there is no colour map.

Return type:

ObjectID

property id: ObjectID[DataObject]

Object ID that uniquely references this object in the project.

Returns:

The unique id of this object.

Return type:

ObjectID

property is_read_only: bool

If this object is read-only.

This will return True if the object was open with Project.read() and False if it was open with Project.edit() or Project.new(). Attempting to edit a read-only object will raise an error.

property lock_type: LockType

Indicates whether operating in read-only or read-write mode.

Use the is_read_only property instead for checking if an object is open for reading or editing.

Returns:

The type of lock on this object. This will be LockType.ReadWrite if the object is open for editing and LockType.Read if the object is open for reading.

Return type:

LockType

property modified_date: datetime

The date and time (in UTC) of when this object was last modified.

Returns:

The date and time this object was last modified. 0:0:0 1/1/1970 if the operation failed.

Return type:

datetime.datetime

property rasters: dict[int, ObjectID[Raster]]

The raster associated with this object.

This is a dictionary of raster indices and Object IDs of the raster images currently associated with this object.

The keys are the raster ids and the values are the Object IDs of the associated rasters. Note that all raster ids are integers however they may not be consecutive - for example, an object may have raster ids 0, 1, 5 and 200.

Notes

Rasters with higher indices appear on top of rasters with lower indices. The maximum possible raster id is 255.

Removing a raster from this dictionary will not remove the raster association from the object. Use dissociate_raster to do this.

Examples

Iterate over all rasters on an object and invert the colours. Note that this will fail if there is no object at the path “target” and it will do nothing if no rasters are associated with the target.

>>> from mapteksdk.project import Project
>>> project = Project()
>>> with project.read("target") as read_object:
...     for raster in read_object.rasters.values():
...         with project.edit(raster) as edit_raster:
...             edit_raster.pixels[:, :3] = 255 - edit_raster.pixels[:, :3]
remove_coordinate_system()

Remove the coordinate system from the object.

This does not change the geometry of the object. It only clears the label which states what coordinate system the object is in.

This has no effect if the object does not have a coordinate system.

save()

Save the changes made to the object.

Generally a user does not need to call this function, because it is called automatically at the end of a with block using Project.new() or Project.edit().

Returns:

The change reasons for the operation. This depends on what changes to the object were saved. If the api_version is less than 1.9, this always returns ChangeReasons.NO_CHANGE.

Return type:

ChangeReasons

set_attribute(name, dtype, data)

Sets the value for the object attribute with the specified name.

This will overwrite any existing attribute with the specified name.

Parameters:
Raises:
  • ValueError – If dtype is an unsupported type.

  • TypeError – If value is an inappropriate type for object attribute name.

  • ValueError – If name starts or ends with whitespace or is empty.

  • RuntimeError – If a different error occurs.

Notes

If an error occurs after adding a new object attribute or editing an existing object attribute resulting in save() not being called, the changes to the object attributes can only be undone if the application’s API version is 1.6 or greater.

Prior to mapteksdk 1.6: Adding new object attributes, or editing the values of object attributes, will not be undone if an error occurs.

Examples

Create an object attribute on an object at “target” and then read its value.

>>> import ctypes
>>> from mapteksdk.project import Project
>>> project = Project()
>>> with project.edit("target") as edit_object:
...     edit_object.set_attribute("count", ctypes.c_int16, 0)
... with project.read("target") as read_object:
...     print(read_object.get_attribute("count"))
0